
Sunitha Kambhampati, IBM

How to extend Spark with
customized optimizations

 #UnifiedAnalytics #SparkAISummit

Center for Open Source
Data and AI Technologies
 IBM Watson West Building

505 Howard St.
San Francisco, CA

CODAIT aims to make AI solutions dramatically
easier to create, deploy, and manage in the
enterprise.

Relaunch of the IBM Spark Technology Center
(STC) to reflect expanded mission.

We contribute to foundational open source
software across the enterprise AI lifecycle.

36 open-source developers!

https://ibm.biz/BdzF6Q

Improving Enterprise AI Lifecycle in Open Source

CODAIT
codait.org

Agenda
•  Introduce Spark Extension Points API

•  Deep Dive into the details
–  What you can do
–  How to use it
–  What things you need to be aware of

•  Enhancements to the API

–  Why
–  Performance results

I want to extend Spark
•  Performance benefits

–  Support for informational referential integrity (RI)
constraints

–  Add Data Skipping Indexes

•  Enabling Third party applications
–  Application uses Spark but it requires some additions

or small changes to Spark

Problem
You have developed customizations to Spark.
How do you add it to your Spark cluster?

Possible Solutions
•  Option 1: Get the code merged to Apache Spark

–  Maybe it is application specific
–  Maybe it is a value add
–  Not something that can be merged into Spark

•  Option 2: Modify Spark code, fork it
–  Maintenance overhead

•  Extensible solution: Use Spark’s Extension Points
API

Spark Extension Points API
•  Added in Spark 2.2 in SPARK-18127
•  Pluggable & Extensible
•  Extend SparkSession with custom optimizations
•  Marked as Experimental API

–  relatively stable
–  has not seen any changes except addition of more

customization

Query Execution

ANALYZER

Rules

SQL Query

DataFrame

ML

Unresolved
Logical

Plan

Analyzed
Logical

Plan

Query Execution

Parser Optimizer

Unresolved
Logical Plan

Analyzed
Logical Plan

Optimized
Logical Plan

Physical
Plan

Analyzer

Rules Rules

SparkPlanner

Spark
Strategies

Supported Customizations

Parser Optimizer Analyzer

Rules Rules

SparkPlanner

Spark
Strategies

Custom
Rules

Custom
Rules

Custom Spark
Strategies

Custom
Parser

Extensions API: At a High level
•  New SparkSessionExtensions Class

–  Methods to pass the customizations
–  Holds the customizations

•  Pass customizations to Spark
–  withExtensions method in SparkSession.builder

SparkSessionExtensions
•  @DeveloperApi

@Experimental
@InterfaceStability.Unstable

•  Inject Methods
–  Pass the custom user rules to

Spark

•  Build Methods
–  Pass the rules to Spark

components
–  Used by Spark Internals

Extension Hooks: Inject Methods
Parser Optimizer Analyzer SparkPlanner

injectResolutionRule
injectCheckRule
injectPostHocResolutionRule

injectOptimizerRule

injectFunction

injectPlannerStrategy injectParser

New in master,
SPARK-25560

Pass custom rules to SparkSession
•  Use ‘withExtensions’ in SparkSession.Builder
 	def	withExtensions(
								f:	SparkSessionExtensions	=>	Unit):	Builder		

•  Use the Spark configuration parameter
–  spark.sql.extensions

•  Takes a class name that implements
Function1[SparkSessionExtensions,	Unit]	

Deep Dive

Use Case #1

You want to add your own optimization rule to
Spark’s Catalyst Optimizer

Add your custom optimizer rule
•  Step 1: Implement your optimizer rule

case class GroupByPushDown(spark: SparkSession) extends Rule[LogicalPlan] {
 def apply(plan: LogicalPlan): LogicalPlan = plan transform {
 …. }}

•  Step 2: Create your ExtensionsBuilder function
type ExtensionsBuilder = SparkSessionExtensions => Unit
val f: ExtensionsBuilder = { e => e.injectOptimizerRule(GroupByPushDown)}

•  Step 3: Use the withExtensions method in SparkSession.builder to
create your custom SparkSession
val spark = SparkSession.builder().master(..).withExtensions(f).getOrCreate()

How does the rule get added?
•  Catalyst Optimizer

–  Rules are grouped in Batches (ie RuleExecutor.Batch)
–  one of the fixed batch has a placeholder to add custom optimizer rules
–  passes in the extendedOperatorOptimizationRules to the batch.

def	extendedOperatorOptimizationRules:	Seq[Rule[LogicalPlan]]	

•  SparkSession stores the SparkSessionExtensions in transient class variable
extensions	

•  The SparkOptimizer instance gets created during the SessionState	
creation for the SparkSession		

–  overrides the extendedOperatorOptimizationRules method to include the
customized rules

–  Check the optimizer method in BaseSessionStateBuilder	

Things to Note
•  Rule gets added to a predefined batch
•  Batch here refers to RuleExecutor.Batch
•  In Master, it is to the following batches:

–  “Operator Optimization before Inferring Filters”
–  “Operator Optimization after Inferring Filters”

•  Check the defaultBatches method in
Optimizer class

Use Case #2

You want to add some parser extensions

Parser Customization
•  Step 1: Implement your parser customization

case class RIExtensionsParser(
 spark: SparkSession,
 delegate: ParserInterface) extends ParserInterface { …}

•  Step 2: Create your ExtensionsBuilder function
type ExtensionsBuilder = SparkSessionExtensions => Unit
val f: ExtensionsBuilder = { e => e.injectParser(RIExtensionsParser)}

•  Step 3: Use the withExtensions method in SparkSession.builder to
create your custom SparkSession
val spark = SparkSession.builder().master("…").withExtensions(f).getOrCreate()

How do the parser extensions work?
•  Customize the parser for any new syntax to support
•  Delegate rest of the Spark SQL syntax to the
SparkSqlParser	

•  sqlParser is created by calling the buildParser on the
extensions object in the SparkSession
–  See sqlParser in BaseSessionStateBuilder	class
–  SparkSqlParser (Default Spark Parser) is passed in

along with the SparkSession	

Use Case #3

You want to add some specific checks in the
Analyzer

Analyzer Customizations
•  Analyzer Rules

injectResolutionRule

•  PostHocResolutionRule
injectPostHocResolutionRule

•  CheckRules
injectCheckRule

Analyzer Rule Customization
•  Step 1: Implement your Analyzer rule

case class MyRIRule(spark: SparkSession) extends Rule[LogicalPlan] {
 def apply(plan: LogicalPlan): LogicalPlan = plan transform {
 …. }}

•  Step 2: Create your ExtensionsBuilder function
type ExtensionsBuilder = SparkSessionExtensions => Unit
val f: ExtensionsBuilder = { e => e.injectResolutionRule(MyRIRule)}

•  Step 3: Use the withExtensions method in SparkSession.builder to
create your custom SparkSession
val spark =
SparkSession.builder().master("..").withExtensions(f).getOrCreate

How is the rule added to the
Analyzer?
•  Analyzer has rules in batches

–  Batch has a placeholder extendedResolutionRules to add custom rules
–  Batch “Post-Hoc Resolution” for postHocResolutionRules	

•  SparkSession stores the SparkSessionExtensions in extensions	

•  When SessionState is created, the custom rules are passed to the
Analyzer by overriding the following class member variables

–  val	extendedResolutionRules	
–  val	postHocResolutionRules	
–  val	extendedCheckRules	

•  Check the BaseSessionStateBuilder.analyzer method
•  Check the HiveSessionStateBuilder.analyzer method

Things to Note
•  Custom resolution rule gets added in the end to

‘Resolution’ Batch
•  The checkRules will get called in the end of the
checkAnalysis method after all the spark
checks are done

•  In Analyzer.checkAnalysis method:
extendedCheckRules.foreach(_(plan))	

Use Case #4

You want to add custom planning strategies

Add new physical plan strategy
•  Step1: Implement your new physical plan Strategy class

case class IdxStrategy(spark: SparkSession) extends SparkStrategy {
 override def apply(plan: LogicalPlan): Seq[SparkPlan] = { ….. }
}

•  Step 2: Create your ExtensionsBuilder function
 type ExtensionsBuilder = SparkSessionExtensions => Unit
 val f: ExtensionsBuilder = { e => e.injectPlannerStrategy(IdxStrategy)}

•  Step 3: Use the withExtensions method in SparkSession.builder to
create your custom SparkSession

 val spark = SparkSession.builder().master(..).withExtensions(f).getOrCreate()

How does the strategy get added
•  SparkPlanner uses a Seq of SparkStrategy

–  strategies function has a placeholder extraPlanningStrategies	

•  SparkSession stores the SparkSessionExtensions in transient class
variable extensions	

•  The SparkPlanner instance gets created during the SessionState	
creation for the SparkSession
–  overrides the extraPlanningStrategies to include the custom strategy

(buildPlannerStrategies)
–  Check the BaseSessionStateBuilder.planner	method
–  Check the HiveSessionStateBuilder.planner	method

Things to Note
•  Custom Strategies are tried after the strategies

defined in ExperimentalMethods, and before
the regular strategies
–  Check the SparkPlanner.strategies method

Use Case #5

You want to register custom functions in the
session catalog

Register Custom Function
•  Step 1: Create a FunctionDescription with your custom

function
type FunctionDescription =
 (FunctionIdentifier, ExpressionInfo, FunctionBuilder)

def utf8strlen(x: String): Int = {..}
val f = udf(utf8strlen(_))
def builder(children: Seq[Expression]) =
f.apply(children.map(Column.apply) : _*).expr

val myfuncDesc = (FunctionIdentifier("utf8strlen"),
 new ExpressionInfo("noclass", "utf8strlen"), builder)

Register Custom Function

•  Step 2: Create your ExtensionsBuilder function to inject
the new function
 type ExtensionsBuilder = SparkSessionExtensions => Unit
 val f: ExtensionsBuilder = { e => e.injectFunction (myfuncDesc)}

•  Step 3: Pass this function to withExtensions method on
SparkSession.builder and create your new SparkSession
 val spark =
 SparkSession.builder().master(..).withExtensions(f).getOrCreate()

How does Custom Function
registration work

•  SparkSessionExtensions keeps track of the
injectedFunctions

•  During SessionCatalog creation, the
injectedFunctions are registered in the
functionRegistry	
–  See class variable BaseSessionStateBuilder.functionRegistry	
–  See	method	SimpleFunctionRegistry.registerFunction

Things to Note
•  Function registration order is same as the order in which the

injectFunction is called
•  No check if an existing function already exists during the

injection
•  A warning is raised if a function replaces an existing function

–  Check is based on lowercase match of the function name
•  Use the SparkSession.catalog.listFunctions to look up

your function
•  The functions registered will be temporary functions
•  See SimpleFunctionRegistry.registerFunction	method

How to exclude the optimizer rule
•  Spark v2.4 has new SQL Conf:
spark.sql.optimizer.excludedRules	

•  Specify the custom rule’s class name

session.conf.set(
"spark.sql.optimizer.excludedRules",	
"org.mycompany.spark.MyCustomRule")	

Other ways to customize
•  ExperimentalMethods

–  Customize Physical Planning Strategies
–  Customize Optimizer Rules

•  Use the SparkSession.experimental method
–  spark.experimental.extraStrategies	

•  Added in the beginning of strategies in SparkPlanner
–  spark.experimental.extraOptimizations	

•  Added after all the batches in SparkOptimizer

Things to Note
•  ExperimentalMethods

–  Rules are injected in a different location than
Extension Points API

–  So use this only if it is advantageous for your usecase

•  Recommendation: Use Extension Points API

Proposed API Enhancements

SPARK-26249: API Enhancements
•  Motivation

–  Lack of fine grained control on rule execution order
–  Add batches in a specific order

•  Add support to extensions API
–  Inject optimizer rule in a specific order
–  Inject optimizer batch

Inject Optimizer Rule in Order
•  Inject a rule after or before an existing rule in a given

existing batch in the Optimizer

def injectOptimizerRuleInOrder(
 builder: RuleBuilder,
 batchName: String,
 ruleOrder: Order.Order,
 existingRule: String): Unit

Inject Optimizer Batch
•  Inject a batch of optimizer rules
•  Specify the order where you want to inject the batch

def injectOptimizerBatch(
 batchName: String,
 maxIterations: Int,
 existingBatchName: String,
 order: Order.Value,
 rules: Seq[RuleBuilder]): Unit

End to End Use Case

Use case: GroupBy Push Down Through Join
•  If the join is an RI join, heuristically push down Group By to the fact table

–  The input to the Group By remains the same before and after the join
–  The input to the join is reduced
–  Overall reduction of the execution time

Aggregate functions
on fact table columns

Grouping columns
is a superset of join
columns

PK – FK joins

Group By Push Down Through Join
Execution plan transformation:

•  Query execution drops from 70 secs to 30 secs (1TB
TPC-DS setup), 2x improvement

select c_customer_sk, c_first_name, c_last_name, s_store_sk, s_store_name,
 min(ss.ss_quantity) as store_sales_quantity
from store_sales ss, date_dim, customer, store
where d_date_sk = ss_sold_date_sk and
 c_customer_sk = ss_customer_sk and
 s_store_sk = ss_store_sk and
 d_year between 2000 and 2002
group by c_customer_sk, c_first_name, c_last_name, s_store_sk, s_store_name
order by c_customer_sk, c_first_name, c_last_name, s_store_sk, s_store_name
limit 100;

Star schema: customer

date_dim

store_sales

store

N : 1

1:
 N

N

 :
1

Retrieve the minimum quantity of items that were sold
between the year 2000 and 2002 grouped by customer and
store information

Optimized Query Plan: Explain
== Optimized Logical Plan ==
GlobalLimit 100
+- LocalLimit 100
 +- Sort [c_customer_sk#52 ASC NULLS FIRST, c_first_name#60 ASC NULLS FIRST, c_last_name#61 ASC NULLS FIRST, s_store_sk#70 ASC NULLS FIRST, s_store_name#75 ASC NULLS FIRST],
true
 +- Project [c_customer_sk#52, c_first_name#60, c_last_name#61, s_store_sk#70, s_store_name#75, store_sales_quantity#0L]
 +- Join Inner, (s_store_sk#70 = ss_store_sk#8)
 :- Project [c_customer_sk#52, c_first_name#60, c_last_name#61, ss_store_sk#8, store_sales_quantity#0L]
 : +- Join Inner, (c_customer_sk#52 = ss_customer_sk#4)
 : :- Aggregate [ss_customer_sk#4, ss_store_sk#8], [ss_customer_sk#4, ss_store_sk#8, min(ss_quantity#11L) AS store_sales_quantity#0L]
 : : +- Project [ss_customer_sk#4, ss_store_sk#8, ss_quantity#11L]
 : : +- Join Inner, (d_date_sk#24 = ss_sold_date_sk#1)
 : : :- Project [ss_sold_date_sk#1, ss_customer_sk#4, ss_store_sk#8, ss_quantity#11L]
 : : : +- Filter ((isnotnull(ss_sold_date_sk#1) && isnotnull(ss_customer_sk#4)) && isnotnull(ss_store_sk#8))
 : : : +-
Relation[ss_sold_date_sk#1,ss_sold_time_sk#2,ss_item_sk#3,ss_customer_sk#4,ss_cdemo_sk#5,ss_hdemo_sk#6,ss_addr_sk#7,ss_store_sk#8,ss_promo_sk#9,ss_ticket_number#10L,ss_quantity#11L,s
s_wholesale_cost#12,ss_list_price#13,ss_sales_price#14,ss_ext_discount_amt#15,ss_ext_sales_price#16,ss_ext_wholesale_cost#17,ss_ext_list_price#18,ss_ext_tax#19,ss_coupon_amt#20,ss_net_paid
#21,ss_net_paid_inc_tax#22,ss_net_profit#23] parquet
 : : +- Project [d_date_sk#24]
 : : +- Filter (((isnotnull(d_year#30L) && (d_year#30L >= 2000)) && (d_year#30L <= 2002)) && isnotnull(d_date_sk#24))
 : : +-
Relation[d_date_sk#24,d_date_id#25,d_date#26,d_month_seq#27L,d_week_seq#28L,d_quarter_seq#29L,d_year#30L,d_dow#31L,d_moy#32L,d_dom#33L,d_qoy#34L,d_fy_year#35L,d_fy_quarter_seq#
36L,d_fy_week_seq#37L,d_day_name#38,d_quarter_name#39,d_holiday#40,d_weekend#41,d_following_holiday#42,d_first_dom#43L,d_last_dom#44L,d_same_day_ly#45L,d_same_day_lq#46L,d_curre
nt_day#47,... 4 more fields] parquet
 : +- Project [c_customer_sk#52, c_first_name#60, c_last_name#61]
 : +- Filter isnotnull(c_customer_sk#52)
 : +-
Relation[c_customer_sk#52,c_customer_id#53,c_current_cdemo_sk#54,c_current_hdemo_sk#55,c_current_addr_sk#56,c_first_shipto_date_sk#57,c_first_sales_date_sk#58,c_salutation#59,c_first_name
#60,c_last_name#61,c_preferred_cust_flag#62,c_birth_day#63L,c_birth_month#64L,c_birth_year#65L,c_birth_country#66,c_login#67,c_email_address#68,c_last_review_date#69L] parquet
 +- Project [s_store_sk#70, s_store_name#75]
 +- Filter isnotnull(s_store_sk#70)
 +-
Relation[s_store_sk#70,s_store_id#71,s_rec_start_date#72,s_rec_end_date#73,s_closed_date_sk#74,s_store_name#75,s_number_employees#76L,s_floor_space#77L,s_hours#78,s_manager#79,s_mar
ket_id#80L,s_geography_class#81,s_market_desc#82,s_market_manager#83,s_division_id#84L,s_division_name#85,s_company_id#86L,s_company_name#87,s_street_number#88,s_street_name#89,s
_street_type#90,s_suite_number#91,s_city#92,s_county#93,... 5 more fields] parquet

Group By is pushed below
Join

Benefits of the Proposed Changes
•  Implemented new GroupByPushDown optimization

rule
–  Benefit from RI constraints

•  Used the Optimizer Customization
•  Injected using injectOptimizerRuleInOrder	

e.injectOptimizerRuleInOrder(
		GroupByPushDown,	
		"Operator	Optimization	before	Inferring	Filters",	
		Order.after,	

							"org.apache.spark.sql.catalyst.optimizer.PushDownPredicate")	

•  Achieved 2X performance improvements

Recap: How to Extend Spark
•  Use the Extension Points API
•  Five Extension Points
•  To add a rule is a 3 step process

–  Implement your rule
–  Implement your wrapper function, use right inject method

type ExtensionsBuilder = SparkSessionExtensions => Unit
–  Plug in the wrapper function

withExtensions method in SparkSession.Builder

Resources
•  https://developer.ibm.com/code/2017/11/30/learn-extension-

points-apache-spark-extend-spark-catalyst-optimizer/
•  https://rtahboub.github.io/blog/2018/writing-customized-

parser/
•  https://github.com/apache/spark/blob/master/sql/core/src/test/

scala/org/apache/spark/sql/
SparkSessionExtensionSuite.scala

•  https://issues.apache.org/jira/browse/SPARK-18127
•  https://issues.apache.org/jira/browse/SPARK-26249
•  http://people.csail.mit.edu/matei/papers/2015/

sigmod_spark_sql.pdf

Thank you!

https://ibm.biz/Bd2GbF

