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Data skew, outliers, power laws, and their symptomsOverview

Joining skewed data more efficiently

Extensions and tips 

How do joins work in Spark, and why skewed data hurts



Data skew



Classic skewed distributions

DATA SKEW

Image by Rodolfo Hermans, CC BY-SA 3.0, via Wikiversity



Outliers

DATA SKEW

Image from Hedges & Shah, “Comparison of mode estimation methods and application in molecular clock analysis”, CC BY 4.0



Power laws

DATA SKEW

Word rank vs. word frequency in an English text corpus



Electrostatic and gravitational forces (inverse square law)Power laws are
everywhere
(approximately)

‘80/20 rule’ in distribution of income (Pareto principle)

Relationship between body size and metabolism
(Kleiber’s law)

Distribution of earthquake magnitudes



Word frequencies in natural language corpora (Zipf’s law)Power laws are
everywhere
(approximately)

Participation inequality on wikis and forum sites (‘1% rule’)

Popularity of websites and their content

Degree distribution in social networks (‘Bieber problem’)



Why is this a problem?



Hot shards in databases — salt keys, change schemaPopularity hotspots:
symptoms and fixes

Hot mappers in map-only tasks — repartition randomly

Hot reducers during joins and aggregations … ?

Slow load times for certain users — look for O(n2) mistakes



Diagnosing hot executors

POPULARITY HOTSPOTS

!?



Spark joins
under the hood



Shuffled hash join
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Shuffled hash join with very skewed data

SPARK JOINS
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Broadcast join can help
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Broadcast join can help sometimes

SPARK JOINS

DataFrame 2

Broadcast
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Must fit in RAM on 
each executor



Joining skewed
data faster



Append random int in [0, R) to each key in skewed dataSplitting a single key
across multiple tasks

Append replica ID to original key in non-skewed data

Join on this newly-generated key

Replicate each row in non-skewed data, R times

R = replication factor



Replicated join

FASTER JOINS
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Logical Partitions

Replica IDs



replication_factor = 10  

# spark.range creates an 'id' column: 0 <= id < replication_factor

replication_ids = F.broadcast(

spark.range(replication_factor).withColumnRenamed('id', 'replica_id')

)

# Replicate uniform data, one copy of each row per bucket

# composite_key looks like: 12345@3 (original_id@replica_id)

uniform_data_replicated = (  

uniform_data  

.crossJoin(replication_ids)  

.withColumn(  

'composite_key',  

F.concat('original_id', F.lit('@'), 'replica_id')  

)  

)  



def randint(limit):  

return F.least(  

F.floor(F.rand() * limit),  

F.lit(limit - 1),  # just to avoid unlikely edge case

)  

# Randomly assign rows in skewed data to buckets

# composite_key has same format as in uniform data

skewed_data_tagged = (  

skewed_data  

.withColumn(  

'composite_key',  

F.concat(  

'original_id',  

F.lit('@'),  

randint(replication_factor),  

)  

)  

)  



# Join them together on the composite key

joined = skewed_data_tagged.join(  

uniform_data_replicated,  

on='composite_key',  

how='inner',  

)  



# Join them together on the composite key

joined = skewed_data_tagged.join(  

uniform_data_replicated,  

on='composite_key',  

how='inner',  
)  WARNING

Inner and left outer 
joins only



Remember duplicates… 

FASTER JOINS

All different rows

Same row

Same row

Same row



100 million rows of data with uniformly-distributed keysExperiments with 
synthetic data

Standard inner join ran for 7+ hours then I killed it!

10x replicated join completed in 1h16m

100 billion rows of data with Zipf-distributed keys



Can we do better?



Very common keys should be replicated many timesDifferential replication

Identify frequent keys before replication

Use different replication policy for those

Rare keys don’t need to be replicated as much (or at all?)



replication_factor_high = 50  
replication_high = F.broadcast(  

spark  

.range(replication_factor_high)  

.withColumnRenamed('id', 'replica_id')  

)  

replication_factor_low = 10  
replication_low = … # as above

# Determine which keys are highly over-represented

top_keys = F.broadcast(  

skewed_data  

.freqItems(['original_id'], 0.0001)  # return keys with frequency > this

.select(  

F.explode('id_freqItems').alias('id_freqItems')  

)  

)  



uniform_data_top_keys = (  

uniform_data  

.join(  

top_keys,  

uniform_data.original_id == top_keys.id_freqItems,  

how='inner',  
)  

.crossJoin(replication_high)  

.withColumn(  

'composite_key',  

F.concat('original_id', F.lit('@'), 'replica_id')  

)  

)  



uniform_data_rest = (  

uniform_data  

.join(  

top_keys,  

uniform_data.original_id == top_keys.id_freqItems,  

how='leftanti',  
)  

.crossJoin(replication_low)  

.withColumn(  

'composite_key',  

F.concat('original_id', F.lit('@'), 'replica_id')  

)  

)

uniform_data_replicated = uniform_data_top_keys.union(uniform_data_rest)



FASTER JOINS
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Replicate very frequent keys more often



skewed_data_tagged = (  

skewed_data  

.join(  

top_keys,  

skewed_data.id == top_keys.id_freqItems,  

how='left',  

)  

.withColumn(  

'replica_id',  

F.when(  

F.isnull(F.col('id_freqItems')), randint(replication_factor_low),  
)  

.otherwise(randint(replication_factor_high))  
)  

.withColumn(  

'composite_key',  

F.concat('original_id', F.lit('@'), 'replica_id')  

)  

)  



100 million rows of data with uniformly-distributed keysExperiments with 
synthetic data

10x replicated join completed in 1h16m

10x/50x differential replication completed in under 1h

100 billion rows of data with Zipf-distributed keys



Other ideas worth mentioning



Identify very common keys in skewed dataPartial broadcasting

Rare keys are joined the traditional way (without replication)

Union the resulting joined DataFrames

Select these rows from uniform data and broadcast join



Get approximate frequency for every key in skewed dataDynamic replication

Intuition: Sliding scale between rarest and most common

Can be hard to make this work in practice!

Replicate uniform data proportional to key frequency



Append random replica_id_that for other side, in [0, Rthat)Double-sided skew

Composite key on left: id, replica_id_that, replica_id_this

Composite key on right: id, replica_id_this, replica_id_that

Replicate each row Rthis times, and append replica_id_this



Summing up



Is the problem just outliers? Can you safely ignore them?Checklist

Look at your data to get an idea of the distribution

Start simple (fixed replication factor) then iterate if necessary

Try broadcast join if possible



Warren & Karau, High Performance Spark (O’Reilly 2017)Credits

Scalding developers: github.com/twitter/scalding

Spark, ML, and distributed systems community @ Yelp

Blog by Maria Restre: datarus.wordpress.com

https://github.com/twitter/scalding
https://datarus.wordpress.com/2015/05/04/fighting-the-skew-in-spark/


Thanks! 
@andrew_clegg


