

# **Smart join algorithms** for fighting skew at scale

Andrew Clegg, Applied Machine Learning Group @ Yelp

@andrew\_clegg

#### **Overview**

- Data skew, outliers, power laws, and their symptoms
- How do **joins** work in Spark, and why skewed data hurts
- Joining skewed data more efficiently
- Extensions and tips

# **Data skew**



**DATA SKEW** 



Image by Rodolfo Hermans, CC BY-SA 3.0, via Wikiversity







Word rank vs. word frequency in an English text corpus

Power laws are everywhere (approximately)

- Electrostatic and gravitational forces (inverse square law)
- Distribution of **earthquake magnitudes**
- (\*) '80/20 rule' in **distribution of income** (Pareto principle)
- Relationship between **body size and metabolism** (Kleiber's law)

Power laws are everywhere (approximately)

- Word frequencies in natural language corpora (Zipf's law)
- Degree distribution in **social networks** ('Bieber problem')
- Participation inequality on wikis and forum sites ('1% rule')
- Popularity of **websites** and their **content**



# Why is this a problem?

# **Popularity hotspots:** symptoms and fixes

- Hot shards in databases salt keys, change schema
- Slow load times for certain users look for  $O(n^2)$  mistakes
- Hot mappers in map-only tasks repartition randomly
- Hot reducers during joins and aggregations ... ?

**POPULARITY HOTSPOTS** 



# **Diagnosing hot executors**

| Metric                       | Min             | 25th percentile  | Median            | 75th percentile    | Max                     |
|------------------------------|-----------------|------------------|-------------------|--------------------|-------------------------|
| Duration                     | 0 ms            | 3 s              | 5 s               | 10 s               | 55 min                  |
| Scheduler Delay              | 8 ms            | 14 ms            | 19 ms             | 42 ms              | 1.1 h                   |
| Task Deserialization Time    | 0 ms            | 83 ms            | 0.1 s             | 0.5 s              | 2 s                     |
| GC Time                      | 0 ms            | 0.2 s            | 0.4 s             | 1 s                | 3.9 min                 |
| Result Serialization Time    | 0 ms            | 0 ms             | 0 ms              | 1 ms               | 3 ms                    |
| Getting Result Time          | 0 ms            | 0 ms             | 0 ms              | 0 ms               | 0 ms                    |
| Peak Execution Memory        | 0.0 B           | 208.0 MB         | 464.0 MB          | 1552.0 MB          | 3.4 GB                  |
| Shuffle Read Blocked Time    | 0 ms            | 5 ms             | 0.2 s             | 0.7 s              | 2 s                     |
| Shuffle Read Size / Records  | 3.4 MB / 709003 | 7.6 MB / 2353476 | 12.1 MB / 6699402 | 25.3 MB / 23890002 | 1740.2 MB / 17593730440 |
| Shuffle Remote Reads         | 3.4 MB          | 7.5 MB           | 12.0 MB           | 25.3 MB            | 1740.2 MB               |
| Shuffle Write Size / Records | 0.0 B / 0       | 59.0 B / 1       | 59.0 B / 1        | 59.0 B / 1         | 59.0 B / 1              |
| Shuffle spill (memory)       | 0.0 B           | 0.0 B            | 0.0 B             | 0.0 B              | 343.9 GB                |
| Shuffle spill (disk)         | 0.0 B           | 0.0 B            | 0.0 B             | 0.0 B              | 2.4 GB                  |

# Spark joins under the hood

**SPARK JOINS** 

### Shuffled hash join



Partitions

### Shuffled hash join with very skewed data



**SPARK JOINS** 

# Broadcast join can help



**SPARK JOINS** 

### **Broadcast join can help sometimes**



# Joining skewed data faster



# Splitting a single key across multiple tasks

- Append random int in [0, R) to each key in skewed data
- Replicate each row in non-skewed data, *R* times
- Append replica ID to original key in non-skewed data
- Join on this newly-generated key

R = replication factor

**FASTER JOINS** 



```
replication factor = 10
# spark.range creates an 'id' column: 0 <= id < replication factor</pre>
replication ids = F.broadcast(
     spark.range(replication factor).withColumnRenamed('id', 'replica id')
)
# Replicate uniform data, one copy of each row per bucket
# composite key looks like: 1234503 (original id0replica id)
uniform data replicated = (
   uniform data
    .crossJoin(replication ids)
    .withColumn(
        'composite key',
        F.concat('original_id', F.lit('@'), 'replica_id')
    )
)
```

```
def randint(limit):
    return F.least(
        F.floor(F.rand() * limit),
        F.lit(limit - 1), # just to avoid unlikely edge case
    )
# Randomly assign rows in skewed data to buckets
# composite key has same format as in uniform data
skewed data tagged = (
    skewed data
    .withColumn(
        'composite key',
        F.concat(
            'original id',
            F.lit('0'),
            randint(replication factor),
        )
    )
)
```

```
# Join them together on the composite key
joined = skewed_data_tagged.join(
    uniform_data_replicated,
    on='composite_key',
    how='inner',
)
```

```
# Join them together on the composite key
joined = skewed_data_tagged.join(
    uniform_data_replicated,
    on='composite_key',
    how='inner',
)
```



# WARNING Inner and left outer joins only

**FASTER JOINS** 

### Remember duplicates...



# **Experiments** with synthetic data

- 100 million rows of data with uniformly-distributed keys
- 100 billion rows of data with Zipf-distributed keys
- Standard inner join **ran for 7+ hours** then I killed it!
- 10x replicated join **completed in 1h16m**



# Can we do better?

### **Differential** replication

- Yery common keys should be replicated many times
- Rare keys don't need to be replicated as much (or at all?)
- Identify frequent keys before replication
- Use different replication policy for those

```
replication_factor_high = 50
```

```
replication_high = F.broadcast(
    spark
    .range(replication_factor_high)
    .withColumnRenamed('id', 'replica_id')
)
```

#### replication\_factor\_low = 10

replication low = ... # as above

```
# Determine which keys are highly over-represented
top_keys = F.broadcast(
    skewed_data
    .freqItems(['original_id'], 0.0001)  # return keys with frequency > this
    .select(
        F.explode('id_freqItems').alias('id_freqItems')
    )
)
```

```
uniform_data_top_keys = (
    uniform_data
    .join(
        top_keys,
        uniform_data.original_id == top_keys.id_freqItems,
        how='inner',
    )
    .crossJoin(replication_high)
    .withColumn(
        'composite_key',
        F.concat('original_id', F.lit('@'), 'replica_id')
    )
```

)

```
uniform_data_rest = (
    uniform_data
    .join(
        top_keys,
        uniform_data.original_id == top_keys.id_freqItems,
        how='leftanti',
    )
    .crossJoin(replication_low)
    .withColumn(
        'composite_key',
        F.concat('original_id', F.lit('@'), 'replica_id')
    )
)
```

uniform\_data\_replicated = uniform\_data\_top\_keys.union(uniform\_data\_rest)

**FASTER JOINS** 

### **Replicate very frequent keys more often**



```
skewed data tagged = (
    skewed data
    .join(
        top keys,
        skewed data.id == top keys.id freqItems,
        how='left',
    )
    .withColumn(
        'replica id',
        F.when(
            F.isnull(F.col('id freqItems')), randint(replication_factor_low),
        )
        .otherwise(randint(replication factor high))
    )
    .withColumn(
        'composite key',
        F.concat('original id', F.lit('@'), 'replica id')
    )
)
```

# **Experiments** with synthetic data

- 100 million rows of data with uniformly-distributed keys
- 100 billion rows of data with Zipf-distributed keys
- 10x replicated join **completed in 1h16m**
- 10x/50x differential replication **completed in under 1h**

# **Other ideas worth mentioning**



#### **Partial** broadcasting

- Identify **very common keys** in skewed data
- Select these rows from uniform data and **broadcast join**
- **Rare keys** are joined the traditional way (without replication)
- Dirion the resulting joined DataFrames

### **Dynamic** replication

- Get approximate frequency for **every key** in skewed data
- Replicate uniform data **proportional to key frequency**
- Intuition: Sliding scale between rarest and most common
- Can be hard to make this work in practice!

#### **Double-sided skew**

- Append random replica\_id\_that for other side, in  $[0, R_{that})$
- Replicate each row  $R_{\text{this}}$  times, and append replica\_id\_this
- Composite key on **left**: id, replica\_id\_that, replica\_id\_this
- Composite key on **right**: id, replica\_id\_this, replica\_id\_that



# Summing up

#### Checklist

- Is the problem just **outliers**? Can you safely ignore them?
- Try **broadcast join** if possible
- Look at your data to get an idea of the distribution
- Start simple (fixed replication factor) then iterate if necessary

#### **Credits**

- Warren & Karau, High Performance Spark (O'Reilly 2017)
- Blog by Maria Restre: <u>datarus.wordpress.com</u>
- Scalding developers: github.com/twitter/scalding
- Spark, ML, and distributed systems community @ Yelp



# Thanks!

@andrew\_clegg