二叉查找树(三)之 Java的实现

概要

在前面分别介绍了”二叉查找树的相关理论知识,然后给出了二叉查找树的C和C++实现版本”。这一章写一写二叉查找树的Java实现版本。

目录

  1. 二叉树查找树
  2. 二叉查找树的Java实现
  3. 二叉查找树的Java测试程序

二叉查找树简介

二叉查找树(Binary Search Tree),又被称为二叉搜索树。

它是特殊的二叉树:对于二叉树,假设x为二叉树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。那么,这棵树就是二叉查找树。如下图所示:

在二叉查找树中:

(01) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

(02) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

(03) 任意节点的左、右子树也分别为二叉查找树。

(04) 没有键值相等的节点(no duplicate nodes)。

二叉查找树的Java实现

1. 二叉查找树节点的定义

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class BSTree<T extends Comparable<T>> {

private BSTNode<T> mRoot; // 根结点

public class BSTNode<T extends Comparable<T>> {
T key; // 关键字(键值)
BSTNode<T> left; // 左孩子
BSTNode<T> right; // 右孩子
BSTNode<T> parent; // 父结点

public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
this.key = key;
this.parent = parent;
this.left = left;
this.right = right;
}
}

......
}

BSTree是二叉树,它保护了二叉树的根节点mRoot;mRoot是BSTNode类型,而BSTNode是二叉查找树的节点,它是BSTree的内部类。BSTNode包含二叉查找树的几个基本信息:

(01) key – 它是关键字,是用来对二叉查找树的节点进行排序的。

(02) left – 它指向当前节点的左孩子。

(03) right – 它指向当前节点的右孩子。

(04) parent – 它指向当前节点的父结点。

2. 遍历

这里讲解前序遍历、中序遍历、后序遍历3种方式。

2.1 前序遍历

若二叉树非空,则执行以下操作:

(01) 访问根结点;

(02) 先序遍历左子树;

(03) 先序遍历右子树。

前序遍历代码

1
2
3
4
5
6
7
8
9
10
11
private void preOrder(BSTNode<T> tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
}

public void preOrder() {
preOrder(mRoot);
}

2.2 中序遍历

若二叉树非空,则执行以下操作:

(01) 中序遍历左子树;

(02) 访问根结点;

(03) 中序遍历右子树。

中序遍历代码

1
2
3
4
5
6
7
8
9
10
11
private void inOrder(BSTNode<T> tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
}

public void inOrder() {
inOrder(mRoot);
}

2.3 后序遍历

若二叉树非空,则执行以下操作:

(01) 后序遍历左子树;

(02) 后序遍历右子树;

(03) 访问根结点。

后序遍历代码

1
2
3
4
5
6
7
8
9
10
11
12
private void postOrder(BSTNode<T> tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
}

public void postOrder() {
postOrder(mRoot);
}

看看下面这颗树的各种遍历方式:

对于上面的二叉树而言,

(01) 前序遍历结果: 3 1 2 5 4 6

(02) 中序遍历结果: 1 2 3 4 5 6

(03) 后序遍历结果: 2 1 4 6 5 3

3. 查找

递归版本的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
* (递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> search(BSTNode<T> x, T key) {
if (x==null)
return x;

int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
}

public BSTNode<T> search(T key) {
return search(mRoot, key);
}

非递归版本的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
* (非递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> iterativeSearch(BSTNode<T> x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key);

if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
}

return x;
}

public BSTNode<T> iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
}

4. 最大值和最小值

查找最大值的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/* 
* 查找最大结点:返回tree为根结点的二叉树的最大结点。
*/
private BSTNode<T> maximum(BSTNode<T> tree) {
if (tree == null)
return null;

while(tree.right != null)
tree = tree.right;
return tree;
}

public T maximum() {
BSTNode<T> p = maximum(mRoot);
if (p != null)
return p.key;

return null;
}

查找最小值的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/* 
* 查找最小结点:返回tree为根结点的二叉树的最小结点。
*/
private BSTNode<T> minimum(BSTNode<T> tree) {
if (tree == null)
return null;

while(tree.left != null)
tree = tree.left;
return tree;
}

public T minimum() {
BSTNode<T> p = minimum(mRoot);
if (p != null)
return p.key;

return null;
}

5. 前驱和后继

节点的前驱:是该节点的左子树中的最大节点。

节点的后继:是该节点的右子树中的最小节点。

查找前驱节点的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/* 
* 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
*/
public BSTNode<T> predecessor(BSTNode<T> x) {
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x.left != null)
return maximum(x.left);

// 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
BSTNode<T> y = x.parent;
while ((y!=null) && (x==y.left)) {
x = y;
y = y.parent;
}

return y;
}

查找后继节点的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/* 
* 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
*/
public BSTNode<T> successor(BSTNode<T> x) {
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x.right != null)
return minimum(x.right);

// 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
BSTNode<T> y = x.parent;
while ((y!=null) && (x==y.right)) {
x = y;
y = y.parent;
}

return y;
}

6. 插入

插入节点的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/* 
* 将结点插入到二叉树中
*
* 参数说明:
* tree 二叉树的
* z 插入的结点
*/
private void insert(BSTree<T> bst, BSTNode<T> z) {
int cmp;
BSTNode<T> y = null;
BSTNode<T> x = bst.mRoot;

// 查找z的插入位置
while (x != null) {
y = x;
cmp = z.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
}

z.parent = y;
if (y==null)
bst.mRoot = z;
else {
cmp = z.key.compareTo(y.key);
if (cmp < 0)
y.left = z;
else
y.right = z;
}
}

/*
* 新建结点(key),并将其插入到二叉树中
*
* 参数说明:
* tree 二叉树的根结点
* key 插入结点的键值
*/
public void insert(T key) {
BSTNode<T> z=new BSTNode<T>(key,null,null,null);

// 如果新建结点失败,则返回。
if (z != null)
insert(this, z);
}

注:本文实现的二叉查找树是允许插入相同键值的节点的。若想禁止二叉查找树中插入相同键值的节点,可以参考”二叉查找树(一)之 图文解析 和 C语言的实现”中的插入函数进行修改。

7. 删除

删除节点的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
/* 
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* bst 二叉树
* z 删除的结点
*/
private BSTNode<T> remove(BSTree<T> bst, BSTNode<T> z) {
BSTNode<T> x=null;
BSTNode<T> y=null;

if ((z.left == null) || (z.right == null) )
y = z;
else
y = successor(z);

if (y.left != null)
x = y.left;
else
x = y.right;

if (x != null)
x.parent = y.parent;

if (y.parent == null)
bst.mRoot = x;
else if (y == y.parent.left)
y.parent.left = x;
else
y.parent.right = x;

if (y != z)
z.key = y.key;

return y;
}

/*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 二叉树的根结点
* z 删除的结点
*/
public void remove(T key) {
BSTNode<T> z, node;

if ((z = search(mRoot, key)) != null)
if ( (node = remove(this, z)) != null)
node = null;
}

8. 打印

打印二叉查找树的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/*
* 打印"二叉查找树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(BSTNode<T> tree, T key, int direction) {

if(tree != null) {

if(direction==0) // tree是根节点
System.out.printf("%2d is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left");

print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
}

public void print() {
if (mRoot != null)
print(mRoot, mRoot.key, 0);
}
```java


### 9. 销毁

销毁二叉查找树的代码

```java
/*
* 销毁二叉树
*/
private void destroy(BSTNode<T> tree) {
if (tree==null)
return ;

if (tree.left != null)
destroy(tree.left);
if (tree.right != null)
destroy(tree.right);

tree=null;
}

public void clear() {
destroy(mRoot);
mRoot = null;
}

完整的实现代码
二叉查找树的Java实现文件(BSTree.java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/**
* Java 语言: 二叉查找树
*
* @author skywang
* @date 2013/11/07
*/

public class BSTree<T extends Comparable<T>> {

private BSTNode<T> mRoot; // 根结点

public class BSTNode<T extends Comparable<T>> {
T key; // 关键字(键值)
BSTNode<T> left; // 左孩子
BSTNode<T> right; // 右孩子
BSTNode<T> parent; // 父结点

public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
this.key = key;
this.parent = parent;
this.left = left;
this.right = right;
}

public T getKey() {
return key;
}

public String toString() {
return "key:"+key;
}
}

public BSTree() {
mRoot=null;
}

/*
* 前序遍历"二叉树"
*/
private void preOrder(BSTNode<T> tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
}

public void preOrder() {
preOrder(mRoot);
}

/*
* 中序遍历"二叉树"
*/
private void inOrder(BSTNode<T> tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
}

public void inOrder() {
inOrder(mRoot);
}


/*
* 后序遍历"二叉树"
*/
private void postOrder(BSTNode<T> tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
}

public void postOrder() {
postOrder(mRoot);
}


/*
* (递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> search(BSTNode<T> x, T key) {
if (x==null)
return x;

int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
}

public BSTNode<T> search(T key) {
return search(mRoot, key);
}

/*
* (非递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> iterativeSearch(BSTNode<T> x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key);

if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
}

return x;
}

public BSTNode<T> iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
}

/*
* 查找最小结点:返回tree为根结点的二叉树的最小结点。
*/
private BSTNode<T> minimum(BSTNode<T> tree) {
if (tree == null)
return null;

while(tree.left != null)
tree = tree.left;
return tree;
}

public T minimum() {
BSTNode<T> p = minimum(mRoot);
if (p != null)
return p.key;

return null;
}

/*
* 查找最大结点:返回tree为根结点的二叉树的最大结点。
*/
private BSTNode<T> maximum(BSTNode<T> tree) {
if (tree == null)
return null;

while(tree.right != null)
tree = tree.right;
return tree;
}

public T maximum() {
BSTNode<T> p = maximum(mRoot);
if (p != null)
return p.key;

return null;
}

/*
* 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
*/
public BSTNode<T> successor(BSTNode<T> x) {
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x.right != null)
return minimum(x.right);

// 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
BSTNode<T> y = x.parent;
while ((y!=null) && (x==y.right)) {
x = y;
y = y.parent;
}

return y;
}

/*
* 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
*/
public BSTNode<T> predecessor(BSTNode<T> x) {
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x.left != null)
return maximum(x.left);

// 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
BSTNode<T> y = x.parent;
while ((y!=null) && (x==y.left)) {
x = y;
y = y.parent;
}

return y;
}

/*
* 将结点插入到二叉树中
*
* 参数说明:
* tree 二叉树的
* z 插入的结点
*/
private void insert(BSTree<T> bst, BSTNode<T> z) {
int cmp;
BSTNode<T> y = null;
BSTNode<T> x = bst.mRoot;

// 查找z的插入位置
while (x != null) {
y = x;
cmp = z.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
}

z.parent = y;
if (y==null)
bst.mRoot = z;
else {
cmp = z.key.compareTo(y.key);
if (cmp < 0)
y.left = z;
else
y.right = z;
}
}

/*
* 新建结点(key),并将其插入到二叉树中
*
* 参数说明:
* tree 二叉树的根结点
* key 插入结点的键值
*/
public void insert(T key) {
BSTNode<T> z=new BSTNode<T>(key,null,null,null);

// 如果新建结点失败,则返回。
if (z != null)
insert(this, z);
}

/*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* bst 二叉树
* z 删除的结点
*/
private BSTNode<T> remove(BSTree<T> bst, BSTNode<T> z) {
BSTNode<T> x=null;
BSTNode<T> y=null;

if ((z.left == null) || (z.right == null) )
y = z;
else
y = successor(z);

if (y.left != null)
x = y.left;
else
x = y.right;

if (x != null)
x.parent = y.parent;

if (y.parent == null)
bst.mRoot = x;
else if (y == y.parent.left)
y.parent.left = x;
else
y.parent.right = x;

if (y != z)
z.key = y.key;

return y;
}

/*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 二叉树的根结点
* z 删除的结点
*/
public void remove(T key) {
BSTNode<T> z, node;

if ((z = search(mRoot, key)) != null)
if ( (node = remove(this, z)) != null)
node = null;
}

/*
* 销毁二叉树
*/
private void destroy(BSTNode<T> tree) {
if (tree==null)
return ;

if (tree.left != null)
destroy(tree.left);
if (tree.right != null)
destroy(tree.right);

tree=null;
}

public void clear() {
destroy(mRoot);
mRoot = null;
}

/*
* 打印"二叉查找树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(BSTNode<T> tree, T key, int direction) {

if(tree != null) {

if(direction==0) // tree是根节点
System.out.printf("%2d is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left");

print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
}

public void print() {
if (mRoot != null)
print(mRoot, mRoot.key, 0);
}
}

二叉查找树的C++测试程序(BSTreeTest.java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
* Java 语言: 二叉查找树
*
* @author skywang
* @date 2013/11/07
*/
public class BSTreeTest {

private static final int arr[] = {1,5,4,3,2,6};

public static void main(String[] args) {
int i, ilen;
BSTree<Integer> tree=new BSTree<Integer>();

System.out.print("== 依次添加: ");
ilen = arr.length;
for(i=0; i<ilen; i++) {
System.out.print(arr[i]+" ");
tree.insert(arr[i]);
}

System.out.print("\n== 前序遍历: ");
tree.preOrder();

System.out.print("\n== 中序遍历: ");
tree.inOrder();

System.out.print("\n== 后序遍历: ");
tree.postOrder();
System.out.println();

System.out.println("== 最小值: "+ tree.minimum());
System.out.println("== 最大值: "+ tree.maximum());
System.out.println("== 树的详细信息: ");
tree.print();

System.out.print("\n== 删除根节点: "+ arr[3]);
tree.remove(arr[3]);

System.out.print("\n== 中序遍历: ");
tree.inOrder();
System.out.println();

// 销毁二叉树
tree.clear();
}
}

在二叉查找树的Java实现中,使用了泛型,也就意味着支持任意类型; 但是该类型必须要实现Comparable接口。

二叉查找树的Java测试程序

上面的BSTreeTest.java是二叉查找树树的测试程序,运行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
== 依次添加: 1 5 4 3 2 6 
== 前序遍历: 1 5 4 3 2 6
== 中序遍历: 1 2 3 4 5 6
== 后序遍历: 2 3 4 6 5 1
== 最小值: 1
== 最大值: 6
== 树的详细信息:
1 is root
5 is 1's right child
4 is 5's left child
3 is 4's left child
2 is 3's left child
6 is 5's right child

== 删除根节点: 3
== 中序遍历: 1 2 4 5 6

下面对测试程序的流程进行分析!

(01) 新建”二叉查找树”root。

(02) 向二叉查找树中依次插入1,5,4,3,2,6 。如下图所示:

(03) 遍历和查找

插入1,5,4,3,2,6之后,得到的二叉查找树如下:

前序遍历结果: 1 5 4 3 2 6

中序遍历结果: 1 2 3 4 5 6

后序遍历结果: 2 3 4 6 5 1

最小值是1,而最大值是6。

(04) 删除节点4。如下图所示:

(05) 重新遍历该二叉查找树。

中序遍历结果: 1 2 4 5 6