伸展树Java实现

概要

前面分别通过C和C++实现了伸展树,本章给出伸展树的Java版本。基本算法和原理都与前两章一样。

  1. 伸展树的介绍
  2. 伸展树的Java实现(完整源码)
  3. 伸展树的Java测试程序

伸展树的介绍

伸展树(Splay Tree)是特殊的二叉查找树。

它的特殊是指,它除了本身是棵二叉查找树之外,它还具备一个特点: 当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。

伸展树的Java实现

1. 基本定义

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class SplayTree<T extends Comparable<T>> {
private SplayTreeNode<T> mRoot; // 根结点
public class SplayTreeNode<T extends Comparable<T>> {
T key; // 关键字(键值)
SplayTreeNode<T> left; // 左孩子
SplayTreeNode<T> right; // 右孩子
public SplayTreeNode() {
this.left = null;
this.right = null;
}
public SplayTreeNode(T key, SplayTreeNode<T> left, SplayTreeNode<T> right) {
this.key = key;
this.left = left;
this.right = right;
}
}
...
}

SplayTree是伸展树,而SplayTreeNode是伸展树节点。在此,我将SplayTreeNode定义为SplayTree的内部类。在伸展树SplayTree中包含了伸展树的根节点mRoot。SplayTreeNode包括的几个组成元素:

(01) key – 是关键字,是用来对伸展树的节点进行排序的。
(02) left – 是左孩子。
(03) right – 是右孩子。

2. 旋转

旋转是伸展树中需要重点关注的,它的代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/* 
* 旋转key对应的节点为根节点,并返回根节点。
* 注意:
* (a):伸展树中存在"键值为key的节点"。
* 将"键值为key的节点"旋转为根节点。
* (b):伸展树中不存在"键值为key的节点",并且key < tree.key。
* b-1 "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
* b-2 "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
* (c):伸展树中不存在"键值为key的节点",并且key > tree.key。
* c-1 "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
* c-2 "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
*/
private SplayTreeNode<T> splay(SplayTreeNode<T> tree, T key) {
if (tree == null)
return tree;
SplayTreeNode<T> N = new SplayTreeNode<T>();
SplayTreeNode<T> l = N;
SplayTreeNode<T> r = N;
SplayTreeNode<T> c;
for (;;) {
int cmp = key.compareTo(tree.key);
if (cmp < 0) {
if (tree.left == null)
break;
if (key.compareTo(tree.left.key) < 0) {
c = tree.left; /* rotate right */
tree.left = c.right;
c.right = tree;
tree = c;
if (tree.left == null)
break;
}
r.left = tree; /* link right */
r = tree;
tree = tree.left;
} else if (cmp > 0) {
if (tree.right == null)
break;
if (key.compareTo(tree.right.key) > 0) {
c = tree.right; /* rotate left */
tree.right = c.left;
c.left = tree;
tree = c;
if (tree.right == null)
break;
}
l.right = tree; /* link left */
l = tree;
tree = tree.right;
} else {
break;
}
}
l.right = tree.left; /* assemble */
r.left = tree.right;
tree.left = N.right;
tree.right = N.left;
return tree;
}
public void splay(T key) {
mRoot = splay(mRoot, key);
}

上面的代码的作用:将”键值为key的节点”旋转为根节点,并返回根节点。它的处理情况共包括:

(a):伸展树中存在”键值为key的节点”。
将”键值为key的节点”旋转为根节点。

(b):伸展树中不存在”键值为key的节点”,并且key < tree->key。
b-1) “键值为key的节点”的前驱节点存在的话,将”键值为key的节点”的前驱节点旋转为根节点。
b-2) “键值为key的节点”的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。

(c):伸展树中不存在”键值为key的节点”,并且key > tree->key。
c-1) “键值为key的节点”的后继节点存在的话,将”键值为key的节点”的后继节点旋转为根节点。
c-2) “键值为key的节点”的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。

下面列举个例子分别对a进行说明。

在下面的伸展树中查找10,,共包括”右旋” –> “右链接” –> “组合”这3步。

01, 右旋

对应代码中的”rotate right”部分

02, 右链接

对应代码中的”link right”部分

03. 组合

对应代码中的”assemble”部分

提示:如果在上面的伸展树中查找”70”,则正好与”示例1”对称,而对应的操作则分别是”rotate left”, “link left”和”assemble”。

其它的情况,例如”查找15是b-1的情况,查找5是b-2的情况”等等,这些都比较简单,大家可以自己分析。

3. 插入

插入代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/* 
* 将结点插入到伸展树中,并返回根节点
* 参数说明:
* tree 伸展树的
* z 插入的结点
*/
private SplayTreeNode<T> insert(SplayTreeNode<T> tree, SplayTreeNode<T> z) {
int cmp;
SplayTreeNode<T> y = null;
SplayTreeNode<T> x = tree;
// 查找z的插入位置
while (x != null) {
y = x;
cmp = z.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else {
System.out.printf("不允许插入相同节点(%d)!\n", z.key);
z=null;
return tree;
}
}
if (y==null)
tree = z;
else {
cmp = z.key.compareTo(y.key);
if (cmp < 0)
y.left = z;
else
y.right = z;
}
return tree;
}
public void insert(T key) {
SplayTreeNode<T> z=new SplayTreeNode<T>(key,null,null);
// 如果新建结点失败,则返回。
if ((z=new SplayTreeNode<T>(key,null,null)) == null)
return ;
// 插入节点
mRoot = insert(mRoot, z);
// 将节点(key)旋转为根节点
mRoot = splay(mRoot, key);
}

insert(key)是提供给外部的接口,它的作用是新建节点(节点的键值为key),并将节点插入到伸展树中;然后,将该节点旋转为根节点。

insert(tree, z)是内部接口,它的作用是将节点z插入到tree中。insert(tree, z)在将z插入到tree中时,仅仅只将tree当作是一棵二叉查找树,而且不允许插入相同节点。

4. 删除

删除代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/* 
* 删除结点(z),并返回被删除的结点
* 参数说明:
* bst 伸展树
* z 删除的结点
*/
private SplayTreeNode<T> remove(SplayTreeNode<T> tree, T key) {
SplayTreeNode<T> x;
if (tree == null)
return null;
// 查找键值为key的节点,找不到的话直接返回。
if (search(tree, key) == null)
return tree;
// 将key对应的节点旋转为根节点。
tree = splay(tree, key);
if (tree.left != null) {
// 将"tree的前驱节点"旋转为根节点
x = splay(tree.left, key);
// 移除tree节点
x.right = tree.right;
}
else
x = tree.right;
tree = null;
return x;
}
public void remove(T key) {
mRoot = remove(mRoot, key);
}

remove(key)是外部接口,remove(tree, key)是内部接口。

remove(tree, key)的作用是:删除伸展树中键值为key的节点。

它会先在伸展树中查找键值为key的节点。若没有找到的话,则直接返回。若找到的话,则将该节点旋转为根节点,然后再删除该节点。

关于”前序遍历”、”中序遍历”、”后序遍历”、”最大值”、”最小值”、”查找”、”打印伸展树”、”销毁伸展树”等接口就不再单独介绍了,Please RTFSC(Read The Fucking Source Code)!这些接口,与前面介绍的”二叉查找树”、”AVL树”的相关接口都是类似的。

伸展树的Java实现(完整源码)

伸展树的实现文件(SplayTree.java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/**
* Java 语言: 伸展树
*
* @author skywang
* @date 2014/02/03
*/

public class SplayTree<T extends Comparable<T>> {

private SplayTreeNode<T> mRoot; // 根结点

public class SplayTreeNode<T extends Comparable<T>> {
T key; // 关键字(键值)
SplayTreeNode<T> left; // 左孩子
SplayTreeNode<T> right; // 右孩子

public SplayTreeNode() {
this.left = null;
this.right = null;
}

public SplayTreeNode(T key, SplayTreeNode<T> left, SplayTreeNode<T> right) {
this.key = key;
this.left = left;
this.right = right;
}
}

public SplayTree() {
mRoot=null;
}

/*
* 前序遍历"伸展树"
*/
private void preOrder(SplayTreeNode<T> tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
}

public void preOrder() {
preOrder(mRoot);
}

/*
* 中序遍历"伸展树"
*/
private void inOrder(SplayTreeNode<T> tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
}

public void inOrder() {
inOrder(mRoot);
}


/*
* 后序遍历"伸展树"
*/
private void postOrder(SplayTreeNode<T> tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
}

public void postOrder() {
postOrder(mRoot);
}


/*
* (递归实现)查找"伸展树x"中键值为key的节点
*/
private SplayTreeNode<T> search(SplayTreeNode<T> x, T key) {
if (x==null)
return x;

int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
}

public SplayTreeNode<T> search(T key) {
return search(mRoot, key);
}

/*
* (非递归实现)查找"伸展树x"中键值为key的节点
*/
private SplayTreeNode<T> iterativeSearch(SplayTreeNode<T> x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key);

if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
}

return x;
}

public SplayTreeNode<T> iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
}

/*
* 查找最小结点:返回tree为根结点的伸展树的最小结点。
*/
private SplayTreeNode<T> minimum(SplayTreeNode<T> tree) {
if (tree == null)
return null;

while(tree.left != null)
tree = tree.left;
return tree;
}

public T minimum() {
SplayTreeNode<T> p = minimum(mRoot);
if (p != null)
return p.key;

return null;
}

/*
* 查找最大结点:返回tree为根结点的伸展树的最大结点。
*/
private SplayTreeNode<T> maximum(SplayTreeNode<T> tree) {
if (tree == null)
return null;

while(tree.right != null)
tree = tree.right;
return tree;
}

public T maximum() {
SplayTreeNode<T> p = maximum(mRoot);
if (p != null)
return p.key;

return null;
}

/*
* 旋转key对应的节点为根节点,并返回根节点。
*
* 注意:
* (a):伸展树中存在"键值为key的节点"。
* 将"键值为key的节点"旋转为根节点。
* (b):伸展树中不存在"键值为key的节点",并且key < tree.key。
* b-1 "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
* b-2 "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
* (c):伸展树中不存在"键值为key的节点",并且key > tree.key。
* c-1 "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
* c-2 "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
*/
private SplayTreeNode<T> splay(SplayTreeNode<T> tree, T key) {
if (tree == null)
return tree;

SplayTreeNode<T> N = new SplayTreeNode<T>();
SplayTreeNode<T> l = N;
SplayTreeNode<T> r = N;
SplayTreeNode<T> c;

for (;;) {

int cmp = key.compareTo(tree.key);
if (cmp < 0) {

if (tree.left == null)
break;

if (key.compareTo(tree.left.key) < 0) {
c = tree.left; /* rotate right */
tree.left = c.right;
c.right = tree;
tree = c;
if (tree.left == null)
break;
}
r.left = tree; /* link right */
r = tree;
tree = tree.left;
} else if (cmp > 0) {

if (tree.right == null)
break;

if (key.compareTo(tree.right.key) > 0) {
c = tree.right; /* rotate left */
tree.right = c.left;
c.left = tree;
tree = c;
if (tree.right == null)
break;
}

l.right = tree; /* link left */
l = tree;
tree = tree.right;
} else {
break;
}
}

l.right = tree.left; /* assemble */
r.left = tree.right;
tree.left = N.right;
tree.right = N.left;

return tree;
}

public void splay(T key) {
mRoot = splay(mRoot, key);
}

/*
* 将结点插入到伸展树中,并返回根节点
*
* 参数说明:
* tree 伸展树的
* z 插入的结点
*/
private SplayTreeNode<T> insert(SplayTreeNode<T> tree, SplayTreeNode<T> z) {
int cmp;
SplayTreeNode<T> y = null;
SplayTreeNode<T> x = tree;

// 查找z的插入位置
while (x != null) {
y = x;
cmp = z.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else {
System.out.printf("不允许插入相同节点(%d)!\n", z.key);
z=null;
return tree;
}
}

if (y==null)
tree = z;
else {
cmp = z.key.compareTo(y.key);
if (cmp < 0)
y.left = z;
else
y.right = z;
}

return tree;
}

public void insert(T key) {
SplayTreeNode<T> z=new SplayTreeNode<T>(key,null,null);

// 如果新建结点失败,则返回。
if ((z=new SplayTreeNode<T>(key,null,null)) == null)
return ;

// 插入节点
mRoot = insert(mRoot, z);
// 将节点(key)旋转为根节点
mRoot = splay(mRoot, key);
}

/*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* bst 伸展树
* z 删除的结点
*/
private SplayTreeNode<T> remove(SplayTreeNode<T> tree, T key) {
SplayTreeNode<T> x;

if (tree == null)
return null;

// 查找键值为key的节点,找不到的话直接返回。
if (search(tree, key) == null)
return tree;

// 将key对应的节点旋转为根节点。
tree = splay(tree, key);

if (tree.left != null) {
// 将"tree的前驱节点"旋转为根节点
x = splay(tree.left, key);
// 移除tree节点
x.right = tree.right;
}
else
x = tree.right;

tree = null;

return x;
}

public void remove(T key) {
mRoot = remove(mRoot, key);
}

/*
* 销毁伸展树
*/
private void destroy(SplayTreeNode<T> tree) {
if (tree==null)
return ;

if (tree.left != null)
destroy(tree.left);
if (tree.right != null)
destroy(tree.right);

tree=null;
}

public void clear() {
destroy(mRoot);
mRoot = null;
}

/*
* 打印"伸展树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(SplayTreeNode<T> tree, T key, int direction) {

if(tree != null) {

if(direction==0) // tree是根节点
System.out.printf("%2d is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left");

print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
}

public void print() {
if (mRoot != null)
print(mRoot, mRoot.key, 0);
}
}

伸展树的测试程序(SplayTreeTest.java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/**
* Java 语言: 伸展树
*
* @author skywang
* @date 2014/02/03
*/
public class SplayTreeTest {

private static final int arr[] = {10,50,40,30,20,60};

public static void main(String[] args) {
int i, ilen;
SplayTree<Integer> tree=new SplayTree<Integer>();

System.out.print("== 依次添加: ");
ilen = arr.length;
for(i=0; i<ilen; i++) {
System.out.print(arr[i]+" ");
tree.insert(arr[i]);
}

System.out.print("\n== 前序遍历: ");
tree.preOrder();

System.out.print("\n== 中序遍历: ");
tree.inOrder();

System.out.print("\n== 后序遍历: ");
tree.postOrder();
System.out.println();

System.out.println("== 最小值: "+ tree.minimum());
System.out.println("== 最大值: "+ tree.maximum());
System.out.println("== 树的详细信息: ");
tree.print();

i = 30;
System.out.printf("\n== 旋转节点(%d)为根节点\n", i);
tree.splay(i);
System.out.printf("== 树的详细信息: \n");
tree.print();

// 销毁二叉树
tree.clear();
}
}

在二叉查找树的Java实现中,使用了泛型,也就意味着它支持任意类型;但是该类型必须要实现Comparable接口。

伸展树的Java测试程序

伸展树的测试程序运行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
== 依次添加: 10 50 40 30 20 60 
== 前序遍历: 60 30 20 10 50 40
== 中序遍历: 10 20 30 40 50 60
== 后序遍历: 10 20 40 50 30 60
== 最小值: 10
== 最大值: 60
== 树的详细信息:
60 is root
30 is 60's left child
20 is 30's left child
10 is 20's left child
50 is 30's right child
40 is 50's left child

== 旋转节点(30)为根节点
== 树的详细信息:
30 is root
20 is 30's left child
10 is 20's left child
60 is 30's right child
50 is 60's left child
40 is 50's left child

测试程序的主要流程是:新建伸展树,然后向伸展树中依次插入10,50,40,30,20,60。插入完毕这些数据之后,伸展树的节点是60;此时,再旋转节点,使得30成为根节点。

依次插入10,50,40,30,20,60示意图如下:

将30旋转为根节点的示意图如下: